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Introduction 
Genetic variability studies are one of the first steps in conservation management programs [1] of endangered 

populations, as they are essential for evaluating genetic health and survival capacity (e.g. 2).There are two 

major subpopulations of the Sorraia horse breed, one in Portugal and the other in Germany. The latter was 

established in 1976 with six founders imported from Portugal, followed by some more recent acquisitions of 

animals born in Portugal [3]. The genetic isolation promoted by the closed management of this breed, 

combined with the reduced number of founders (only 12, since 1937) and the reduced effective population size, 

led to high inbreeding values (F=0.38). Therefore, the Sorraia is one Portuguese autochthonous equine breed 

recognized as extremely endangered and is considered in critical-maintained risk status according to FAO 

criteria [4,5]. Microsatellites are mainly located in non-coding regions, highly polymorphic, co-dominantly 

inherited and still an useful tool to describe and analyze livestock genetic variability [e.g. 6,7]. The genetic 

variability of the Sorraia horse has been analyzed in the past [e.g. 8,9,10] and here we update that information. 

 

Conclusion 
Despite a management breeding plan has been implemented in the last decade in order to retain the existing genetic 

variability, namely by promoting the population subdivision, stallion rotation and maximum avoidance of inbreeding, 

inbreeding is still very high and genetic variability as measured by different parameters is low. Our results show that the 

Portuguese and ñolderò German populations now form two separate clusters with some degree of genetic differentiation 

between them. It will now be important to promote exchange between PT and GER in future management plans in order to 

counteract genetic drift effects, further minimize inbreeding and increase genetic variability. This will hopefully improve the 

breedsô genetic health and prevent the permanent loss of this iconic and important animal genetic resource.  

Results and Discussion 
X-linked mSats 

ÅMNA was 2.8 in the TOTAL, 2.6 in PT and 2.8 in GER. HO was similar in PT (0.333) and in 

GER (0.325), although HE was higher in GER (0.484 vs 0.382) (Table 1). FIS was almost 

half in PT and FST was 0.1152. 

Autosomal mSats 

ÅMNA was 3.7 in the TOTAL, 3.7 in PT and 3.5 in GER (Table 1). This set of mSats allows 

a high probability of paternity exclusion (PE=1) being appropriate for parentage testing. 

HO and HE were slightly higher in GER (0.580 and 0.572, respectively). FIS was lowest in 

GER and FST between subpopulations was 0.0672. 

ÅAverage inbreeding, d2 and individual heterozygosity (Figure 1) in the total population 

were 0.3816, 60.6449 (in bp2) and 0.5708, respectively. Inbreeding was higher in PT. 

GER had better values of mean d2 and individual heterozygosity. These values are direct 

results of the different breeding strategies: in PT, one stallion is chosen per herd, per 

year; in GER, one stallion is chosen per mare, per year, resulting in a higher number of 

stallions used yearly and increasing genetic variation and decreasing inbreeding. 
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Objectives 
ÅEvaluate genetic variability by microsatellite (mSat) analysis (50  autosomal loci - ABGe099, ABGe121, 

ABGe151, ABGe241, AHT004, AHT005, AHT107, AHT58, ASB002, ASB009, COR003, COR007, COR012, 

COR058, COR062, COR065, COR073, COR089, COR105, HMS003, HMS006, HMS007, HTG004, 

HTG006, HTG010, LEX020, LEX023, LEX036, NVHEQ100, NVHEQ43, SGCV24, TKY034, TKY1001, 

TKY315, TKY321, TKY384, TKY412, TKY448, TKY477, TKY478, TKY523, TKY568, TKY623, TKY741, 

TKY806, UCDEQ005, UCDEQ405, UM011, UMNE158 and VHL020; 5 X-linked loci - LEX003, LEX024, 

LEX027, UCDEQ502 and TKY038);  

ÅCompare genetic parameters on the whole (TOTAL), Portuguese (PT) and German (GER) populations and 

look for signs of population structure. 

Materials and Methods 
DNA was extracted (N=190, 13 different breeders) from whole blood and hair samples 

following standard protocols. Microsatellite genotyping was carried out in a Li-Cor 4200S (Li-

Cor, Lincoln, NE) or an ABI 3730 sequencer. Alleles were scored according to PCR product 

size with RFLPscan 3.1 software (Scanalytics CPS Inc., Rockville, MD) and GeneMapper® 

v4.1 (Applied Biosystems). The mean number of alleles (MNA), observed heterozygosity 

(HO), unbiased expected heterozygosity (HE), polymorphic information content (PIC), 

probability of paternity exclusion (PE), individual heterozygosity, mean d2 distance, 

heterozygote deficiency coefficient (FIS) and FST coefficient were calculated using MS Office 

Excel, CERVUS [11] and Genepop [12]. Population structure was assessed using 

STRUCTURE [13] and by FCA analysis in GENETIX [14]. The total population was 

considered as well as the two subpopulations separately (Portugal and Germany). 
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Table 1 ï Summary statistics for the 50 autosomal mSats (N=190) and 5 X-linked microsatellites (N=98): mean number of 

alleles (NA), observed heterozygosity (HO), unbiased expected heterozygosity (HE), polymorphic information content (PIC), 

probability of paternity exclusion (PE), heterozygote deficiency coefficient (FIS).  

TOTAL  PORTUGAL   GERMANY 
NA HO HE PIC PE NA HO HE FIS NA HO HE FIS 

X-linked 2.8 0.332 0.423 0.374 0.88 2.6 0.333 0.382 0.132 2.8 0.325 0.484 0.386 

Autosomal 3.7 0.573 0.586 0.526 1 3.7 0.570 0.571 0.003 3.5 0.580 0.572 -0.009 

Figure 1 - Distribution of inbreeding, individual heterozygosities and d2 in the whole population (top row) and by subpopulation (bottom 

row). Heterozygosities and d2 calculated with up to 50 autosomal mSats (N=190) 

Figure 2 - STRUCTURE assignment of the 13 different breeders into K=3 clusters (N=190, 50 autosomal mSats). 

Figure 3 - FCA on autosomal mSats (Portugal - blue; Germany - yellow)(N=190) 

FST = 0.0672 

Autosomal mSats (cont.) 

ÅSTRUCTURE analysis separated our samples in three clusters (Figure 2): 

cluster 1 (breeder 1, 2, 3, 5, 7, 8 and 11), contains animals from the Andrade 

family, and studs based on Andradeôs animals (2 Portuguese and the most 

recent German breeder); cluster 2 (4, 6 and 12), all from PT breeders and 

related to the National Stud Farm; cluster 3 (9, 10 and 13) contains animals 

from the oldest German breeders and a Portuguese breeder. This analysis 

clearly demonstrates the historic evolution of this breed and connections 

between breeders.  

ÅFCA separated analysed animals into two main groups: PT and GER (Figure 

3). PC1 clearly separates the Portuguese and ñoldò German breeders, 

whereas animals from the recent German breeder are still non-

distinguishable from the Portuguese ones due to the newly imported 

animals. PC2 separates de Portuguese breeders but because of recent 

efforts by the Breeders Association to promote stallion exchange between 

stud farms, they do not completely separate from each other, explaining why 

we could not see 3 clusters as proposed by Structure analysis. This is also in 

agreement with the low FST values found between PT and GER. 


